
Localization on Freeways using the Horizon Line Signature

Nghia Ho1 and Punarjay Chakravarty2

1nghiaho.com
2KU Leuven, ESAT-PSI, jaychakravarty.com

Abstract— We explore the horizon line as a viable signa-
ture for vision-based localization on a freeway. Our proposed
system uses a single forward facing camera mounted on
the dash of a vehicle. Preliminary testing shows successful
localization for 10 video sequences conducted on a freeway,
travelling up to 100km/h, under varying weather conditions
(sunny/cloudy/rainy). A particle filter is employed for local-
ization. For the motion model, we use a purely vision-based
method that counts the number of lane markings per frame.
Overall, we conducted over 240 km of localization experiments.

I. INTRODUCTION

Localization is a fundamental requirement in robotics.
From indoor mobile robots wandering university labs [1]
to experimental autonomous vehicles that traverse long dis-
tances without human intervention ([2], [3]), any time a robot
needs to navigate between places in an environment, it needs
to solve the localization problem of determining where it is
in the world.

Whilst the Google car and the DARPA Grand Challenge
vehicles used an array of sensors including GPS, inertial sen-
sors, radar, laser range finders and cameras, recent research
([4], [5], [6], [7], [8], [9]) has focused on localization using
vision alone.

Vision sensors are attractive due to their relatively low
cost and passive operational nature. Images capture very
rich information about the environment, albeit requiring
more complex processing. Vision-based localization has the
potential to operate with higher accuracy in GPS denied en-
vironments like urban canyons and tunnels. Google, through
its Street View service, provides a vast database of mapped
urban streets, which can be used as reference sequences for
visual localization. Vision is also the modality with which
we humans localize. For these reasons, we explore vision-
based localization and the focus of this paper is visual
localization in outdoor urban environments, along previously
driven routes.

Any vision-based localization is essentially an im-
age matching problem. Illumination differences, seasonal
changes, view point variations, man-made environmental
modifications and occlusion make this a non-trivial problem.
The ideal algorithm for extracting a signature that can be
matched between images should be able to cope with such
issues and yet be highly discriminative at the same time.

Techniques for vision-based localization using image fea-
tures can be divided into local and global features. With the
former, many local features such as SURF, SIFT and FAST

([4] and [5]) are extracted and matched between images,
whereas with the latter, one global signature is matched
between images ([7] and [8]).

Despite some robustness of local features to viewpoint
and scale changes, they can fail when faced with extreme
seasonal change. This problem is addressed by [6] by a
brute-force method, with imagery from each location over
many seasons. [7] and [8] use global features on panoramic
imagery for outdoor mobile robot localization. [8] uses patch
normalized images, matched in the frequency (Fourier) do-
main, whereas [7] extracts a Haar wavelet signature describ-
ing each panoramic image. Patch normalized images are also
used by [9] to demonstrate localization across challenging
image sets that span both day and night.

A different way to solve the visual localization problem
is to take a higher level, semantic scene-understanding ap-
proach to localization.

Scene understanding could be at a pixel level, where each
pixel is classified into one of many classes ([10], [11], [12]),
or at an object level, where a classifier is able to recognize
an object using image features and draw a bounding box
around it [13].

Pixel level road scene classification is described by [10],
who use a Convolutional Neural Network trained on weak,
machine labelled ground truth to classify the scene into sky,
road and building facades, and by [11], who in addition to
classifying individual pixels into road, building, sky, tree,
sidewalk, etc. based on motion and appearance features, also
use a CRF to model pairwise and higher order relationships
between neighbouring pixels. [12] used road scenes classified
at a pixel level for localizing a vehicle in urban Japan.

Traffic signs dotting streets and highways at frequent
intervals could be used for object level classification to aid
localization systems, and [13] describes such a system, that
classifies traffic signs and localizes them on 3D maps of the
road created while driving through them.

Another possible feature found on residential streets are
street numbers, and Google looked at recognizing house
numbers to improve Street View localization [14].

We look at using the horizon line as a signature because
it is stable as long as the environment does not drastically
change structure. It is robust to daytime illumination changes
and being a small one-dimensional signature (we work on
downsampled images), is fast to compute and compare.

The horizon line has previously been used by [15] and [16]
to match skylines in real images to synthetically generated

Fig. 1: Challenges of our datasets: weather and seasonal
changes, occlusion from vehicles and inconsistent camera
extrinsics. Each row corresponds to a matching pair.

ones from 3D models of the landscape. [15] uses panoramic
images (taken with cameras with fisheye lenses) to outper-
form GPS localization in urban canyons, while [16] matches
mountain skylines from tourist photos in Switzerland to syn-
thetically generated skylines from a digital elevation model
of the country. Both these techniques involved relatively clear
views of the horizon with little occlusion: one because of
high altitude and another because of specialist hardware: a
fisheye lens looking straight up at skyscraper-rich urban city-
scapes.

Our application uses a regular forward-looking camera
mounted behind the windshield of a car, of the sort used by
driver-aid systems like lane departure warning and pedes-
trian detection, fitted in high-end vehicles and after-market
systems [17] available today. The view of the horizon from a
forward looking view is not unimpeded and is often occluded
by trucks and the use of such a signature for the localization
of a vehicle along a freeway, to the best of our knowledge,
hasn’t been attempted before.

The horizon signature is fed into a temporal smoothing
algorithm able to handle a multi-modal distribution of the
location of the vehicle, the particle filter.

Lane markers along highways have a characteristic dot-
dash-dot pattern, and the speed of travel along them deter-
mines the apparent frequency of this signal. We investigate
the use of this frequency as a motion model for our particle
filter. The use of lane markings for odometry is, to the best
of our knowledge novel.

Some of the challenges we face are highlighted in figure 1.
They include weather and seasonal changes , occlusion from
vehicles and inconsistent camera extrinsics (yaw/pitch/roll).

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of our proposed method, describing
the hardware and algorithms involved. Section III describes
how we detect the horizon and match it to reference images.
Section IV describes the lane marker counting algorithm that
is used as the motion model for the particle filter. Section V
covers our implementation of the particle filter. Experimental
results are presented in section VI. Finally, conclusions and

future work are discussed in section VII.

II. PROPOSED METHOD

We now give an overview of how our localization system
works. To collect our data, we used a Canon S100 point
and shoot camera initially attached to the passenger-side sun
visor with a custom-built hook and later to the windscreen
using a suction mount. Video was collected over a span
of 9 months, using 2 different vehicles, resulting in small
discrepancies in viewing angles. The videos were recorded
at 640x480 resolution at 30 fps. All video was processed
offline on a laptop with an Intel i7-4700MQ CPU running
at 2.40GHz and equipped with 16GB of RAM.

The localization system uses a particle filter to track the
vehicle. The particle filter has two phases:

1) Motion Model: propagate the particles when new
odometry data has arrived

2) Sensor Model: update the particle weights when new
sensor data has arrived

The sensor data in this case is the detected horizon line,
represented as a 1D feature vector. For odometry, we detect
and count the number of lane markings over time in a bird’s
eye view/ground projection image and use this information
to propagate the particles.

The pseudo code for our localization system is given in
algorithm 1. The lane counting module runs every frame
while the particle updates are done every 25 frames.

Algorithm 1 Overview of localization system
1: initializeParticles()
2: while grabVideoFrame() do
3: runLaneCounting()
4: if mod(frameCount, 25) = 0 then
5: speed = speedFromLaneCounting()
6: signature = detectHorizonLine()
7: applyMotionModel(speed)
8: applySensorModel(signature)
9: estimateVehiclePosition()

10: resampleParticles()
11: end if
12: end while

All the code is written in C++ using OpenCV on Linux.

III. HORIZON DETECTION

The algorithm works on the assumption that the sky is
always of a lighter intensity than the ground and scans
downwards along each column from the top of the image
and finds the first pixel that has a blue intensity value higher
than a threshold value or has a vertical gradient higher
than a threshold, which is marked as the horizon pixel. We
found using only the blue channel to be adequate for all the
datasets.

A pre-processing step of color reduction and downsamping
is performed prior to the horizon line detection. The horizon
detection algorithm is given in algorithm 2. The image co-
ordinate convention we use throughout the paper for y=0 is

Fig. 2: Examples of horizon lines detected.

at the bottom of the image. Examples of detected horizons
are shown in Figure 2. In general, the horizon detection
algorithm has been found to work well in all parts of our
datasets except when obscured by a truck or inside tunnels,
where there is no sky-ground horizon to be detected.

Algorithm 2 Horizon detection and signature creation
1: function horizonSignature(img : [640x480 RGB])
2: horizon : integer array[0..79]
3: tmp = colourReductionAndDownSize(img) // 80x60
4: skyColor = findSkyColorAboveHorizon(tmp)
5: for x = 0 to 79 do
6: for y = 59 to 30 do
7: horizon[x] = y
8: edgeStrength = |tmp(y,x,blue) - tmp(y-1,x,blue)|
9: if img(y,x,blue) < 100 OR edgeStrength > 80 then

10: break
11: end if
12: end for
13: end for
14: leftSig = horizon[0..51] // two third overlapping
15: rightSig = horizon[28..79] // two third overlapping
16: return leftSig, rightSig

The horizonSignature function returns two vectors of 52
integers. Each vector is 2/3 the length of the original horizon
line and overlap each other, starting from the far left and
right. We refer to them as the left and right signature. This
helps to improve matching when we are driving in different
lanes and provides some robustness to vehicles occluding
one of the lanes. The scores from the left and right signature
are then averaged together as follows

score = (horizonScore(leftSigA, leftSigB)+

horizonScore(rightSigA, rightSigB))/2

where A and B are the two images whose signatures need
to be compared.

A. Matching

We use mean-sum-of-absolute-difference (MSAD) with
shift correction to match the signatures. The shift correction

is necessary due to the slightly different viewing angles
between the datasets. To correct for both x and y shifts, we
opted for a simple brute force 2D search of possible shifts
within a window and find the best match. To speed the task
up we used a pyramidal scheme. Using the pyramids we can
constrain the search to ±1 pixel at each level. Using a 3
level pyramid this translates to a maximum shift correction
of ±7, which was found to be adequate due to the heavy
downsampling (8x) of the horizon signature in the pre-
processing step. Since the signature is 52 integers, it divides
nicely for the pyramid: 52, 26, 13.

The value returned from MSAD with shift correction is
then fed into a sigmoid function to return a value between
[0,1] for the particle filter. The weights and bias of the
sigmoid were trained using ground truth for dataset #2.
Dataset #2 contains 94 manually aligned images with dataset
#1. 279 (93x3) positive and negative samples were generated
from the ground truth and trained using logistic regression
found in Python’s scikit-learn package.

The matching function is described in algorithm 3. The
WEIGHT and BIAS parameters used in our experiments are
-2.10899 and 5.12172, respectively.

Algorithm 3 Horizon matching with shift correction
1: function horizonScore(sigA : [0..52], sigB : [0..52])
2: pyramidA[3] = generatePyramid(sigA, levels=3)
3: pyramidB[3] = generatePyramid(sigB, levels=3)
4: best = 0, estShiftX = 0, estShiftY = 0
5: for level = 0 to 2 do
6: bestDiff = 0, bestShiftX = 0, bestShiftY = 0
7: for shiftY = -1 to 1 do
8: for shiftX = -1 to 1 do
9: diff = sumAbsDiff(sigA, sigB, estShiftX +

shiftX, estShiftY + shiftY)
10: if diff < bestdiff then
11: bestDiff = diff
12: bestShiftX = shiftX
13: bestShiftY = shiftY
14: end if
15: end for
16: end for
17: best = bestDiff
18: estShiftX = (estShiftX + bestShiftX) x 2 // upscale
19: estShiftY = (estShiftY + bestShiftY) x 2 // upscale
20: end for
21: x = (double)best / 52 // average
22: score = 1/(1 + exp(-x*WEIGHT + BIAS)) // sigmoid
23: return score

The function generatePyramid recursively downsamples
the horizon signature by two using averaging. Since the
signature represents a line in a 2D image the downsampling
needs to be done for both x and y direction. So the averaging
becomes

avg[i] = (A[i× 2] +A[i× 2])/4

Fig. 3: Ground projection model

Fig. 4: Ground projection mapping

The sumAbsDiff function handles border issues by using
the nearest valid array index.

IV. VEHICLE SPEED USING LANE MARKER COUNTING

The dot-dash-dot pattern of highway lane markers is
utilized by our algorithm to determine the virtual speed of the
vehicle in terms of lane markers per frame. This speed is then
used as an odometer, to propagate the particles in the particle
filter described in the next section. The lane marker detection
and counting can be divided into the following steps, which
are elaborated on next.

1) Ground view image generation
2) Shadow removal and lane marker detection
3) Lane marker counting for odometry
The following sub-sections describe these steps in more

detail.

A. Ground View Image Generation

The ground view image is generated from the forward
facing camera by applying a pre-computing mapping based
on ray projection trigonometry. The model we use is shown
in figure 3 and the mapping between forward and ground
views is shown in figure 4. We assume the ground is flat
and the camera is looking directly at the horizon.

B. Shadow Removal and Lane Marker Detection

The grayscale ground image is patch normalized to remove
shadows and highlights from it. Patch normalization subtracts
from each image pixel the mean value of pixels in a square
patch around it and divides it by the standard deviation of
pixels in that patch.

Lane markings are characterized as regions of high inten-
sity surrounded by regions of low intensity and are extracted
by a filter that searches for such an intensity profile [18].

Fig. 5: Steps in the detection of lane markings. From top
left, in raster scan order: Ground view projection, patch
normalization to remove shadows and highlights, lane marker
filtering, connected components analysis to get lane markings
in regions of interest immediately in front of the vehicle, on
either side of it.

The output of patch normalization is passed through this
filter, which scans each row of the image and performs the
following operation on each input pixel x[i] to give the output
pixel y[i] of the filtered image as follows:

y[i] = 2x[i]− (x[i− τ]− x[i+ τ]) + abs(x[i− τ]− x[i+ τ])

where τ is the lane width. The filter is applied for a set
of different τ values.

The output of this image is thresholded to give a binary
image with the lanes shown in white. This binary output is
dilated and connected components analysis is then used to
filter out elements that are too small. Two rectangular region
of interest masks (roughly the length of the lane markings)
are then used to further filter out the components that are
not likely to be part of the lane. These masks make the
assumption that the vehicle is roughly centered in the lane.

Figure 5 illustrates the steps of the lane marker detection
algorithm.

C. Lane Marker Counting for Odometry

The number of on pixels under these masks in the binary
image are counted in each frame, and this number is stored
in a rolling buffer of 100 frames. This 100-length buffer,
containing the local appearance history of lane markings is
used to find continuously varying maximum and minimum
thresholds (80% and 20% of the maximum value in this
buffer) for the presence of a lane marker. If the number of
on pixels under the lane mask in the current frame exceeds
the maximum value, a lane is considered to be present. The
lane is considered to continue to be present until this number
goes back under the minimum threshold.

The presence/absence of lane markings over time is a
square wave signal, whose peaks tell us the virtual speed
of the vehicle in terms of lane markers per frame.

In our experiments, dataset #1 is used as the reference se-
quence, and its lane marker speed is recorded for every 100th
frame of the sequence. When matching other sequences to
this reference sequence, the currently estimated lane marker
speed is compared against the reference lane marker speed to
find out the relative speed, which is then used to propagate
each particle along the sequence. An important point to note
is that we are comparing the frequency of the lane markers
between the sequence to be localized and the reference
sequence. We are not depending on the absolute frequency
at any point in the sequence, which might change not just
because of speed, but also because of lane type; for instance,
the physical separation between the dots along entrance/exit
lanes, main freeway lanes and tunnel lanes are all different.

V. PARTICLE FILTER

Our implementation of the particle filter is identical to the
one described in [19].

A fixed number of 10,000 particles was used throughout
the localization. Alternatively, we could use an adaptive
method like KLD-sampling [19] but we found a fixed number
to work well while still being fast. Most of the datasets
have roughly 32,000 frames so this represents about 30%
coverage.

The particle with the highest score is taken to be the best
estimate of the vehicle’s position at that given time. We tried
a weighted average but found it was not as accurate.

VI. EXPERIMENTAL RESULTS

We collected a total of 11 datasets on the Monash Freeway
(Melbourne, Australia) for a single direction of travel. The
distance for each run, estimated by Google Maps is 24.6
km. The data collected spans across a 9 month period, with
the first 6 sets collected in July (winter) and the remaining
5 in March (autumn). The weather conditions varied from
bright and sunny, to overcast and rainy. The freeway is three
laned for the most part, with short sections having four. We
mainly drove between the first and the second lane, with
later datasets having brief instances of driving in the right-
most overtaking lane. Two different vehicles were used for
the winter and autumn datasets. A Google Map of the route
taken with localization results overlayed is shown in figure
6.

To get a qualitative measure of the localization accu-
racy, ground truth data was created manually by hand for
each dataset at every 300th frame. We use the very first
dataset collected as the reference for all experiments. Each
dataset typically required 100 ground truth points marked.
For positions in between the marked points we used linear
interpolation. This was found to be accurate enough because
300 frames equates to 10 seconds of travel, which is short
enough that we can safely assume near-constant speed. All
localization error values stated are in terms of frame, that is
the absolute difference with the ground truth frame.

We define the following measures for each dataset:
1) percentage of localization within ±30 frames of the

ground truth

 1

 10

 100

 1000

 0 5000 10000 15000 20000 25000 30000 35000

a
b

so
lu

te
 f

ra
m

e
 e

rr
o
r

frame no.

localization error for dataset #8

30

 10

 100

 1000

 10000

 0 5000 10000 15000 20000 25000 30000 35000st
a
n
d

a
rd

 d
e
v
ia

ti
o
n
 o

f
fr

a
m

e
s

frame no.

particle spread for dataset #8

Fig. 7: Localization errors and particle spread for best
performing dataset (#8).

 1

 10

 100

 1000

 10000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

a
b

so
lu

te
 f

ra
m

e
 e

rr
o
r

frame no.

localization error for dataset #6

30

 10

 100

 1000

 10000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000st
a
n
d

a
rd

 d
e
v
ia

ti
o
n
 o

f
fr

a
m

e
s

frame no.

particle spread for dataset #6

Fig. 8: Localization errors and particle spread for the worst
performing dataset (#6). The particle filter loses track be-
tween frames 22,000 and 45,000.

2) median localization error
3) localization error of the last frame

(1) measures the number of particle updates that have
localized successfully. We define a successful localization
to be within ±30 frames of the ground truth, or one second
in real life, which we believe is an acceptable measure of
success. At 100 km/h, this is equivalent to ±27.8m.

(2) uses the median localization error instead of the mean
value to better reflect our data. The mean would be skewed
by the initial global localization stage, during which time the
particles are spread all over the sequence. We could have
removed the global localization stage from this analysis, but
its length varies between datasets and would have required
manual selection.

(3) is used to asses whether the localization has succeeded

Particle spread for each marked location directly above. The highest value of the bar is σ = 100 frames and occurs
typically during global localization at the beginning. A blue line indicates a σ > 100.

Fig. 6: Google Map of Monash Freeway (Melbourne, Australia) with the result from dataset #8 overlayed on top. Localized
positions are marked every 300 frames, with red circles indicating a correct match (within ±30 frames of the ground truth)
and blue circles indicating an incorrect match. No ground truth was marked for the tunnel section. The estimated travel
distance is 24.6 km.

Dataset weather date video length
(mins)

correct
matches %

median
frame error

last frame er-
ror

#1 (ref) sunny 15/07/13 17:30
#2 cloudy 16/07/13 17:03 0.77 5 2
#3 cloudy 18/07/13 17:55 0.69 9 3
#4 cloudy 20/07/13 17:55 0.75 8 2
#5 cloudy 23/07/13 19:00 0.60 14 75
#6 cloudy 25/07/13 27:10 0.27 450 1
#7 sunny 29/07/13 17:36 0.66 8 2
#8 sunny 30/07/13 17:15 0.82 5 1
#9 sunny 14/03/14 17:52 0.73 8 10
#10 dark overcast 15/03/14 18:00 0.75 8 13
#11 cloudy 17/03/14 18:22 0.68 9 1

TABLE I: Localization results for all datasets. Dataset #1 is used as the reference video. Dataset #6 has localization errors
for a majority of the sequence, due to very heavy traffic causing problems for the image signature, but recovers towards the
end.

all the way to the end of the freeway, or failed somewhere
in between.

The experimental results are summarized in table I. The
worst final frame localization error of 75 frames was for
dataset #5 and the worst performing dataset in terms of
percentage of correct matches was 6, where trucks occluded
the horizon often. A still image from this dataset is shown
in the bottom left image of figure 1. Trucks on both sides
of the vehicle completely occlude the horizon line. The poor
quality of horizon signature matching is also reflected in the
cyan ROC curve for dataset #6 (figure 11).

The tunnel section exhibits an interesting behavior. When
the vehicle enters the tunnel, there is no horizon and the
horizon signature ends up being a flat line. The reason the
particle filter is able to relocalize fairly quickly upon exiting
the tunnel is because all the matches have very similar scores.
Thus, the particles end up spreading themselves over the
tunnel to reflect their uncertainty.

The localization errors (on a logarithmic scale) and the
particle spreads over time are plotted for the best and
worst performing datasets in figures 7 and 8. The blue
line indicates the threshold for good localization (within 30

frames of ground truth).
Figure 9 shows some examples of matches and mis-

matches for dataset #10 (captured 9 months after the ref-
erence dataset #1) from the particle filter.

Our system takes about 36 ms to update the particle filter
for 10,000 particles, which includes horizon extraction and
matching. The lane counting takes about 7 ms. The system
runs at 23 frames per second. Times are quoted for a single
core as we have not multi-threaded our code. A video of the
localization is available at http://youtu.be/ylMbMA8COu0.

A. Horizon signature analysis

We analyze the characteristics of the horizon signature by
generating confusion matrices and ROC curves for all the
datasets using the ground truth, which is marked every 300
frames excluding the tunnel section.

The confusion matrix for dataset #2 (obtained by plotting
the match scores between images in #2 on the y axis and
images in #1 on the x axis) is shown in figure 10.

It displays a strong diagonal response (white), implying
that a majority of the ground truth images match between
sequences. Low matches on the diagonal typically corre-
spond to points along the sequence where the horizon is

Fig. 9: Examples of matches and mismatches from dataset
#10 (left column) taken 9 months after the reference dataset
#1 (right column), using localization output from the particle
filter. Mismatches are highlighted in a red box. The top rows
highlights seasonal changes. Second row shows man made
changes. The final two rows show the mismatches that seem
close together, but are still 84 and 131 frames apart (approx.
62m and 97).

c
u
r
r
e
n
t

reference

20

40

60

80

100

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Fig. 10: Confusion matrix (94x94) for dataset #2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

tr
u
e
 p

o
si

ti
v
e
 r

a
te

false positive rate

ROC curves for horizon signature

dataset #2
dataset #3
dataset #4
dataset #5
dataset #6
dataset #7
dataset #8
dataset #9

dataset #10
dataset #11

Fig. 11: ROC curves for all datasets

Fig. 12: Example of patch normalization using 8x8 patches.
The right image is a downsized 64x48 image of the left
image.

obscured by trucks. There are only a small number of white
pixels off the diagonal, suggesting that the horizon is fairly
distinctive for the environment, atleast outside the tunnel
section (74-82 on the y axis), which is missing ground truth
and is black in the figure. The confusion matrices for the
remaining datasets (omitted given space constraints) have
similar diagonal responses.

The ROC curves (figure 11) are similar between the
datasets with a 70-80% true positive rate returning a 10-20%
false positive rate.

We also compared the horizon signature with patch nor-
malized image signature, matched using sum of absolute
differences as used by [9] in their sequence SLAM algorithm.
For a fairer comparison, only the top half of the image is
used, which aims to eliminate some of the occlusion from
vehicles. This gave slightly better results than using the entire
image.

Patch normalization (figure 12) comprises of cropping and
downsampling the image (to 64x24), and then normalizing
each 8x8 patch in the image by subtracting its mean and
dividing by its standard deviation.

A comparison of the ROC curves is shown in figure 13.
The precision-recall curves of the two signatures are shown
in 14. For the sake of clarity, we only plot the best performing
dataset for each signature.

It is evident that the horizon signature out performs
patch normalization overall (atleast in these freeway envi-
ronments), even after cropping the top half of the image.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

tr
u
e
 p

o
si

ti
v
e
 r

a
te

false positive rate

ROC curves for horizon signature vs. patch normalization

horizon signature #2-#11

patch normalization
dataset #2
dataset #3
dataset #4
dataset #5
dataset #6
dataset #7
dataset #8
dataset #9

dataset #10
dataset #11

Fig. 13: Horizon signature vs. patch normalization for all
datasets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

ci
si

o
n

recall

precision recall curves for the best dataset

horizon signature (dataset #8)

patch normalization (dataset #2)

Fig. 14: Precision-recall curves for the two signatures on
their respective best performing datasets

VII. CONCLUSIONS AND FUTURE WORK

We have shown that the horizon signature coupled with a
particle filter for temporal smoothing is a viable feature for
localization in freeway environments. It is robust to daytime
illumination changes, weather and seasonal changes, and to
most dynamic objects in the scene. Trucks are problematic
because they occlude a large part of the horizon, analogous
to a lost GPS signal. Horizon-less tunnels also present a
challenge to the system. Currently, the system’s localization
loses accuracy in the 1.6 km long tunnel in the datasets,
does not completely lose track and locks on to the correct
position soon after emergence. A different feature will need
to be employed for more accurate localization within tunnels.
Another drawback is that the horizon is only detectable
during the day time.

We have also used the frequency of the lane markers
as an odometry measure/motion model for propagating the
particles in the particle filter.

The freeway, and built-up environments in general, have
many other high level semantic features that we can use to
augment our horizon signature. For example, we have done
some preliminary investigation into using road signs as a
feature. These have shown to be promising because they are
unlikely to change over time and have strong colour contrast

with the surroundings.
In addition to adding new features, we plan to test the

system in non-freeway environments, specifically inner city
streets and localize datasets we collect against Google’s pre-
existing Street View images.

REFERENCES

[1] D. Fox, S. Thrun, F. Dellaert, and W. Burgard, “Particle filters for
mobile robot localization,” in Sequential Monte Carlo Methods in
Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York:
Springer Verlag, 2000, to appear.

[2] How google’s self-driving car works. [On-
line]. Available: http://spectrum.ieee.org/automaton/robotics/artificial-
intelligence/how-google-self-driving-car-works

[3] M. Buehler, K. Iagnemma, and S. Singh, Eds., The DARPA
Urban Challenge: Autonomous Vehicles in City Traffic, George Air
Force Base, Victorville, California, USA, ser. Springer Tracts in
Advanced Robotics, vol. 56. Springer, 2009. [Online]. Available:
http://dblp.uni-trier.de/db/conf/darpa/urban2009.html

[4] H. Badino, D. Huber, and T. Kanade, “Visual topometric localization,”
in Intelligent Vehicles Symposium (IV), 2011 IEEE, June 2011, pp.
794–799.

[5] T. Botterill, S. Mills, and R. D. Green, “Bag-of-words-driven, single-
camera simultaneous localization and mapping.” J. Field Robotics,
vol. 28, no. 2, pp. 204–226, 2011.

[6] C. Valgren and A. J. Lilienthal, “Sift, surf and seasons: Long-term
outdoor localization using local features.” in EMCR, 2007.

[7] N. Ho and R. Jarvis, “Vision based global localisation using a 3d
environmental model created by a laser range scanner,” in Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, Sept 2008, pp. 2964–2969.

[8] A. M. Zhang and L. Kleeman, “Robust appearance based visual route
following in large scale outdoor environments.”

[9] M. Milford and G. Wyeth, “Seqslam : visual route-based
navigation for sunny summer days and stormy winter nights,”
in IEEE International Conferece on Robotics and Automation
(ICRA 2012), N. Papanikolopoulos, Ed. River Centre, Saint
Paul, Minnesota: IEEE, 2012, pp. 1643–1649. [Online]. Available:
http://eprints.qut.edu.au/51538/

[10] J. M. Alvarez, T. Gevers, Y. LeCun, and A. M. Lopez, “Road scene
understanding from a single image,” in European Conference on
Computer Vision (ECCV), 2012.

[11] P. Sturgess and K. Alahiri, “Combining appearance and structure from
motion features for road scene understanding,” in British Machine
Vision Conference (BMVC), 2009.

[12] J. Miura and K. Yamamoto, “Robust view matching-based markov
localization in outdoor environments,” in IEEE/RJS Int. Conf. on
Intelligent Robots and Systems, 2008.

[13] R. Timofte, K. Zimmermann, and L. J. V. Gool., “Multi-view traffic
sign detection, recognition, and 3d localisation.” in IEEE Workshop
on Applications of Computer Vision (WACV), 2009.

[14] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet,
“Multi-digit number recognition from street view imagery using deep
convolutional neural networks,” CoRR, vol. abs/1312.6082, 2013.

[15] S. Ramalingam, S. Bouaziz, P. F. Sturm, and M. Brand, “Skyline2gps:
Localization in urban canyons using omni-skylines,” in IROS, 2010.

[16] G. Baatz, O. Saurer, K. Kser, and M. Pollefeys, “Large scale visual
geo-localization of images in mountainous terrain.” in ECCV (2), ser.
Lecture Notes in Computer Science, A. W. Fitzgibbon, S. Lazebnik,
P. Perona, Y. Sato, and C. Schmid, Eds., vol. 7573. Springer, 2012,
pp. 517–530.

[17] Mobileye. [Online]. Available: http://www.mobileye.com/
[18] L. S. M. Nieto, J. Arrospide, “Road environment modeling using

robust perspective analysis and recursive bayesian segmentation,”
Machine Vision and Applications, vol. 22, no. 6, pp. 927–945, 2011.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

