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Abstract— This paper demonstrates the use of a single
forward facing camera for obstacle avoidance on a quadrotor.
We train a CNN for estimating depth from a single image. The
depth map is then fed to a behaviour arbitration based control
algorithm that steers the quadrotor away from obstacles. We
conduct experiments with simulated and real drones in a variety
of environments.

I. INTRODUCTION

There are a large number of inexpensive, light-weight
quadrotor UAVs on the market that come with a front-facing
camera and are controllable over Wi-Fi using app-enabled
smartphones. These UAVs, in the hands of inexperienced
pilots are prone to regular crashes because they have little
autonomous flying capability of their own. The problem of
crashing into obstacles is even more apparent in obstacle-
strewn indoor environments, where most people are liable to
first experiment with their Christmas presents, given that out-
door flying is tightly regulated in many countries, especially
in Europe. Crashes chip and break the plastic propellers and
the body of the drone, and repeated replacement quickly
turns out to be an expensive proposition.

Now imagine that users are able to download a software
update for the app on their phone that allows their drones
to avoid obstacles and fly autonomously with the existing
hardware on their quadrotors. This is the application that we
target in this paper - single image based depth estimation
and obstacle avoidance for quadrotor helicopters.

We train a Deep Convolutional Neural Network (CNN)
to predict depth maps given RGB images with supervised
learning over thousands of training images collected from
both online databases and data that we have collected our-
selves. We use a control algorithm in a Behaviour Arbitration
scheme that accepts the depth map as its input and outputs
the angular velocity φ̇ in both yaw and pitch axes to steer the
quadrotor away from obstacles and towards a goal location.
We conduct experiments in a simulated environment with
different types of horizontal and vertical obstacles and in a
real-world indoor environment. Thus, our key contribution
is the training of a CNN for generation of depth maps
from single images, and the demonstration of a control
algorithm operating on these depth maps in a Behaviour
Arbitration scheme for real-time control of a quadrotor in
indoor environments.

The rest of the paper is organized as follows. Section II
describes prior work done in this area. Section III describes
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the theory behind the CNN and Behaviour Arbitration al-
gorithms. Section IV talks about important implementation
details to successfully train the network. Section V describes
results from simulated and real-world drone flights for ob-
stacle avoidance. We conclude with Section VI.

II. RELATED WORK

A. Traditional Sensing for Obstacle Avoidance

Traditionally, obstacle avoidance for robots has been done
using either active sensing like LIDAR, structured light,
sonar or IR [1], [2] or using passive sensing like stereo vision
[3], [4].

Structure in the scene can also be determined from a
single moving camera, and [5] uses the camera movement
during quadrotor hover to calculate a depth map using dense
Structure from Motion (SfM), calculating a path, and then
flying through it. However, in such an SfM-based obstacle
avoidance scheme, the drone is limited to a hover-map-
plan-path-move-hover trajectory, and even SfM methods that
can path-plan on the fly [6] are not able to avoid dynamic
obstacles which might have moved during mapping or be-
tween mapping cycles. Also, untextured walls (as is the
case with most indoor environments) are not detected in
traditional SfM methods. In contrast, a single image depth
based obstacle avoidance scheme such as ours has the ability
to deal with plain, white-washed walls and moving obstacles.

Time of flight sensors like LIDAR and structured light
sensors can be expensive, both in terms of actual cost,
and in terms of weight and power requirements, both at a
premium when it comes to small flying platforms. Sonar
and IR are only suitable for very short range (within a
metre) depth sensing, and only give information about free
space within the small cone of the returned signal, which
is suitable for short-range obstacle avoidance, but not for
longer range path planning or for fast, reactive flying. Stereo
results in depth images with more information, that can be
used for path planning, but with the small baseline between
cameras possible on a drone, it also suffers from limited
range problems.

B. Single Image Based Obstacle Avoidance and Navigation

Single images were first used for depth extraction, using
supervised learning by [7]. Large amounts of data - images
and their corresponding depth maps were used to train a clas-
sifier to create depth maps from single images. Hand-crafted
convolutional image features were used to encode a feature
vector for local image patches. Contextual information was
captured by applying the filters at multiple scales and an



MRF was used to probabilistically model the relationship
between the depth of neighbouring patches. Similar hand-
crafted features were used by [8], who demonstrated their
use for controlling a remote controlled car from a single
RGB camera mounted on it, and by [9] who used them for
outdoor obstacle avoidance on a quadrotor helicopter.

[10] used a monocular camera and sonar sensors to fly
their helicopters in indoor environments. Perspective cues
were used to detect the flying direction in corridors and
staircases. Edge detection and the Hough Transform were
used to detect parallel lines in a staircase and converging
lines in a corridor. Sonar was used to avoid obstacles.

More recently, with the success of Deep Learning, CNNs
have been used for single image depth extraction [11],
[12], [13]. Hand-crafted image features are now replaced by
the features that the network learns, given large amounts
of training data. CNNs are applied at multiple scales in
the image, with the output of the CNNs at larger scales
used as an additional input to the CNNs at lower scales
to achieve depth maps of higher resolution. A CNN-based
algorithm that given an input image, outputs one out of
three classes - turn left, go straight and turn right has been
used to fly a quadrotor through forest trails [14]. They used
3 head-mounted cameras (pointed straight, left and right)
on a hiker walking through trails for training the network
that output 3 classes - straight, left and right, which were
used for controlling the drone. However, this means that the
directional control output is also learnt by the network and
is tailored to one particular environment. [15] adapted the
fully connected layers of [14]’s network (trained in forests
in Switzerland) to work better in forests in the United States
using Domain Adaptation. In contrast, we use a Deep CNN
to create depth maps that are then fed into a Behaviour
Arbitration-based control scheme. It outputs a continuous
control signal that works on the estimated single image based
depth map, and is not environment specific. Training images
are acquired indoors using the Microsoft Kinect, but a stereo
setup or a time of flight camera could also be used (outdoors)
for training. We train a network for indoor environments,
but another network could be trained for depth estimation in
outdoor environments, with an unchanged control scheme. In
our experiments with both hand-crafted features and CNNs,
we find the latter a more promising approach, and more
suitable for real-time applications. Our trained network is
able to give relative depth information up to 5-10 metres
from the camera.

III. METHOD

A. Single Image Depth Extraction

The architecture of our CNN is based on the Global Coarse
Scale Network used by [11] (Figure 1). This network has a
sequence of convolutional layers alternated with max-pooling
and ReLU layers, followed by 2 fully connected layers.

We added a batch normalization layer at the end of
each convolutional layer. This helps against overfitting by
normalizing batches of data processed in a particular layer
to a Gaussian distribution.

For the network loss function, we use a scale invariant
error L(y, y∗) in log-space, between the estimated depth
image y and the ground truth depth image y∗. The log-loss dp
is calculated pixel-wise, but is normalized by 1

P 2 (
∑

p dp)
2,

which is the squared log error over all pixels p in the image.
This is done to make the equation scale invariant, as in [11].

L(y, y∗) =
1

P

∑
p

d2p −
1

P 2
(
∑
p

dp)
2 (1)

where 1
P 2 (

∑
p dp)

2 is the squared log error for the whole
image and dp = log yp − log y∗p is the per pixel log error.

This gives us the relative depth of different obstacles
around the quadrotor in the image. Even though we don’t
have the absolute depth, we can plug in the scale-invariant
depth map produced by the network into the control algo-
rithm described in the next section to control the quadrotor.

B. Quadrotor Control based on a Behavior Arbitration
Scheme

We use the Behaviour Arbitration scheme from [1] for
controlling the quadrotor from a depth map. In simulation,
we conduct experiments with both a simulated Kinect sensor
on a drone, and the output of the single image based depth
estimation described in the previous section. In real-world
experiments, we only use the single image depth.

The original behaviour for avoiding obstacles [1] relied on
a sonar ring or a laser range finder type 2.5D sensor, with a
single strip of depth values around the robot. In our case, we
convert the depth map to 2.5D by using depth values from
its centre in the vertical and horizontal directions, as shown
in Figure 2.

These depth values di from angles ψi around the quadrotor
are then input into the avoid behaviour (equation 3) to get an
angular velocity that steers it away from obstacles. Similarly,
equation 2 steers the drone toward a goal orientation (ψgoal,
relative to the current bearing φ) by steering away from the
current bearing towards the target bearing. The goto and
avoid behaviours are combined using a weighted sum of
angular velocities output by each (equation 4) as in [1].

φ̇ = fgoto(φ) = −λgotosin(φ− ψgoal) (2)

φ̇ = favoid(φ)

= λavoid
∑
i

[(φ− ψi) exp(−cobstdi) exp(−(φ− ψi)
2/2σ2)]

(3)

φ̇ =
∑
b

wbfb(φ) (4)

where the gains λavoid and cobst can be adjusted, along
with angular range σ, to be more or less reactive to the
distance to walls and obstacles. Similarly, λgoto can be
adjusted to make the drone react more quickly in moving
towards the goal. We set the angular range to be equal to the
FOV of the camera of the drone. These parameters and their
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Fig. 1. CNN architecture for depth estimation from a single image.

Fig. 2. Extraction of depth values from depth map for Avoid Behaviour. A
vertical and horizontal strip through the middle of the depth image is used,
with averaged depths within each vertical and horizontal bin verti/horzi
used for depth value di from angle ψi in Equation 3.

effects on obstacle avoidance are explained further in Section
V. The avoid behaviour is prone to getting stuck in corners.
To solve this, we use a template signature (a triangular or
hat function that corresponds to the depth values in a corner)
to detect a corner and move away from it if necessary.

IV. IMPLEMENTATION DETAILS
A. Depth CNN

a) Data collection: The depth CNN is initially trained
using 260k images from the NYU2 dataset v2 [16]. This
dataset contains RGB images and their corresponding depth
maps taken in a variety of indoor scenes. The CNN is then
fine-tuned with 20k further samples collected from around
our offices. These image/depthmap pairs are collected by
walking around with a Kinect sensor around the corridors,
classrooms and meeting rooms at our university building. We
will refer to this dataset as the ESAT dataset in the remainder
of the paper.

b) Training: Our network contains about 80 million
parameters and we spent a significant amount of time op-
timizing the hyperparameters - learning rate, momentum,
dropout rate and regularization for ridge regression.

A too slow learning rate for Stochastic Gradient Descent
causes the network to converge very slowly. A too fast
learning rate causes the network to converge quickly, but it
converges to a higher loss value. The momentum parameter
behaves like the coefficient of friction in the optimization
landscape. A schedule that starts with a smaller value
(0.5) and increases as the training progresses ensures good
convergence. Finally, the regularization parameter for ridge
regression needs to be selected so that the network does
not overfit. When applied, fine tuning is done by resuming
training with new data samples and lower learning rate.

We train our network 1 using the Matconvnet library for

1details available from http://www.jaychakravarty.com/
single-image-obstacle-avoid/

Fig. 3. Depth maps generated by our network on test data from our building
(ESAT dataset). From top to bottom: RGB image, ground truth, depth map
with network trained on NYU2 dataset, depth map with network fine-tuned
on the ESAT dataset.

TABLE I
DEPTH NETWORK COMPARISON

Method Error (rmse inv) Accuracy
(δ < 1.25)

Train NYU2/Test NYU2 [11] 0.221 0.618
Train NYU2/Test NYU2 0.181 0.703
Train NYU2/Test ESAT 0.484 0.314

Fine-tune ESAT/Test ESAT 0.332 0.480

Matlab [17]. It takes 12 hours to train on a NVIDIA GTX
1050 GPU.

B. Controlling the drone

Real-world experiments are performed using a Parrot
Bebop drone 2 [18] controlled from a Dell Alienware laptop
with 16GB RAM and an NVIDIA 765M GPU that allows
the CNN to run at 20 fps. We interface with the drone
using ROS, using the bebop autonomy package created and
maintained by [19]. The drone sends images to the laptop,
which processes each RGB image to create a depth map, and
a control output φ̇. We only use the angular velocity in the
yaw direction for real-world experiments (both yaw and pitch
φ̇ are used in the simulation experiments). The quadrotor is
launched at a particular height, and then proceeds forward
autonomously at constant forward speed. The single image
depth and control algorithm controls its steering.

http://www.jaychakravarty.com/single-image-obstacle-avoid/
http://www.jaychakravarty.com/single-image-obstacle-avoid/


TABLE II
PERFORMANCE OF OUR ALGORITHMS IN THE 100 SIMULATED WORLDS.

Method % Completed Failures
Kinect depth + Control 100% -

Single Image depth + Control 68% 13 stuck
19 crashes

V. EXPERIMENTS

A. Performance of the depth network on RGB images

We test the performance of the depth network on the
left out data from the NYU2 and ESAT datasets (480 and
672 test images respectively) using the root mean square
invariant (rmse inv) error and accuracy. The rmse inv error
is calculated over all the test images i using the image-wise
scale-invariant error in log-space L(yi, y∗i ) from equation 1.

rmse inv =

√
1

I

∑
i

L(yi, y∗i ) (5)

where I is the total number of test images.
Accuracy is determined by

% of yi,p s.t. max(
yi,p
y∗i,p

,
y∗i,p
yi,p

) = δ < threshold (6)

where yi,p and y∗i,p are the estimated and ground-truth
depths for pixel p in image i.

Table I shows the performance of the depth network under
these criteria under different training and testing regimes.
First, using training data from NYU2 and testing on the left
out images from NYU2, our network (row 2) is comparable
to the coarse network of [11] (row 1), but with slightly
improved performance (lower rmse inv and higher accuracy),
which is perhaps attributable to the addition of batch nor-
malization layers. Row 3 shows that our network trained on
NYU2 performs worse when tested on ESAT. But when the
same network is fine-tuned with 20k images from ESAT, and
tested on the left out images from ESAT, its performance
improves (row 4). The left out images from ESAT were all
taken in rooms not seen in the training set. Qualitative results
are shown in Figure 3. These results show that fine-tuning
with data from an environment improves the performance
of the network in that environment. However, to test the
generalization of the original network to different simulated
and real-world environments, we conduct all our subsequent
experiments with our network trained on the NYU2 dataset.

B. Performance of the depth network in steering the drone
in simulated environments

We generate 100 simulated worlds in Gazebo to test
the flying characteristics of the single image depth and
Behaviour Arbitration control discussed earlier. Each world
is a rectangular room with 3 types of obstacles: a wall, a
ceiling overhang and a bump on the floor. The size and order
of the obstacles is varied across the worlds. These obstacles
are designed to test the obstacle avoidance properties of the
drone in both the yaw and pitch axes. The drone takes off at
one end of the room, and is given a target bearing direction.

Fig. 4. Perspective view of one version (out of 100 simulated versions with
different sizes of wall, ceiling overhang and floor bump) of the obstacle
avoidance challenge. TABLE III

PERFORMANCE OF DEPTH ESTIMATION WITH CONTROL ALGORITHM

World Mean crash time [s] Mean distance traveled [m]
Pole world 54.9 43.92

Corridor world 85.7 68.56

Its current bearing is taken from the ground truth available
in the simulation. In reality this would require a compass
or localization software based on sensor data. It is expected
to navigate the room whilst avoiding obstacles. When the
drone arrives at the end of the room, it is considered to be a
successful flight. When the drone collides with an object
it is considered a crash, if it takes too long to complete
the task (about 5 minutes of flying) it is considered to be
stuck in a loop. The following algorithms are used to test its
performance.

1) Kinect depth + Control: A simulated Kinect depth
sensor is placed on the drone and this is fed into the
Behaviour Arbitration control algorithm

2) Single Image depth + Control: The RGB image from
the forward-facing camera of the drone is fed into the
Single Image Depth CNN to get a depth map, which
is then fed into the Behaviour Arbitration control
algorithm

The performance of the different algorithms are compared
in Table II. It should be noted that the simple template match-
ing technique we used to detect corners was not feasible with
the noisy depth estimation of the CNN, therefore we disabled
that when evaluating the single image depth with control
algorithm. As was to be expected, using single image depth
results in lower performance than using perfect depth images
from the kinect. It is noteworthy however that a significant
portion of the failure cases were when the drone got stuck
in a loop, meaning it did not actually collide into an object.

To further evaluate the performance of the depth estima-
tion with the Behaviour Arbitration control algorithm, we set
up two more virtual worlds. The first is an enclosed room
with pole-like wall segments placed in the centre, which will
be referred to as the pole-world. The other world is a maze-
like corridor world, referred to as corridor world. The drone
trajectories in these environments can be seen in figures 5
and 6. The simulated drone is spawned in different locations
in these worlds and allowed to fly till it crashes. The mean
over 10 flights in each world is shown in Table III).

Both the pole and corridor worlds have some texture on
the floor, but no texture on the walls. Texture-less walls are
a common feature of most indoor environments, and this is



Fig. 5. Top-down view of the pole world with trajectories from simulated
flights. Crashes are shown with a diamond.

Fig. 6. Top-down view of the corridor world with simulated flight
trajectories and crashes (diamonds at the end of trajectories).

where other, SfM based depth sensing methods are likely to
fail.

We also do not fine-tune our network for these simulated
environments. It is important to stress that the network
trained on the NYU2 dataset (indoor images from American
homes and not fine-tuned on the simulated data) is able
to generate adequate depth maps for these scenarios. The
Behaviour Arbitration control algorithm, using these depth
maps, successfully steers the drone over tens of metres in
both worlds.

C. Performance of the depth network in steering the drone
in real indoor environments

Fig. 7. Drone avoiding obstacles in the cafeteria experiment (9/10
successful flights).

We perform indoor experiments in our university environ-
ment. One set of experiments is performed at the department
cafeteria, and another set in the department corridors. The
cafeteria has large open spaces, where we put up poster
screens as obstacles.

Figure 7 shows a trajectory of the drone while flying
through the cafeteria. An experiment was determined to be

a success if the drone successfully steered its way through
3 poster screens, which it did in 9/10 experiments.

In the corridor experiments, the drone is required to
navigate safely up and down the narrower confines of the
corridor (10 trials, 5 in each direction), turn (left/right)
through a T-shaped junction (5 trials) and turn right at an
L-shaped junction (5 trials). Figure 8 shows images captured
from the drone camera and their corresponding depth maps.
Steering commands (φ̇) are visualized using the red bar in
the RGB image. The drone successfully navigated through
the corridor and turned at the junctions in 18/20 flights.

The only parameters we adjusted for our experiments are
two of the Behaviour Arbitration scheme, namely cobst and
λavoid from equation 3, which have an exponential and linear
effect respectively. An informal interpretation of these two
parameters is that when cobst is smaller, the control algorithm
will react to obstacles that are further away and increasing
λavoid will make the drone turn away from an obstacle with
a higher angular velocity. These parameters can be adjusted
to either let the drone give a wider berth to obstacles, or get
closer to them before turning away.

No explicit goal instructions are given to the drone
(fgoto(φ) from equation 2 is turned off) in both cafeteria
and corridor experiments.

The Parrot Bebop drone has problems holding position
and drifts even when no control commands are given to it
while operating over un-textured floors, as is often the case
in indoor environments. Modifying the in-built position-hold
algorithm (that utilizes the bottom-facing camera) was out
of the scope of the experiments we conducted for this paper.
We solved this problem by putting carpets under the flight
path of the drone, which meant that the trajectory length
was limited to the cumulative area of the carpets. The per-
formance of the depth estimation and control algorithm over
longer trajectories was evaluated qualitatively by walking
down the corridors of the department with video footage
captured on a mobile phone. These videos will be provided
as supplementary material.

D. Failure cases

As the depth estimation is solely based on a single image
and has no memory, it may fail in some situations where it
lacks proper context. The known failure cases are discussed
here.

a) Too close to wall: if the drone takes off very close
to a wall so that it only sees this, it lacks the perspective
view required to estimate the depth. In this case the control
algorithm is unable to make a proper decision as to where
to move to and would thus collide into the wall.

b) Corners: when flying around the drone may move
towards a corner. While it is approaching the corner the depth
map would indicate more free space in front than to the left
or right, causing the drone to continue to move towards the
corner.

c) Windows: Clear glass windows are a problem for
the depth estimator as it sees right through them.



Fig. 8. Shown here are 3 experiments from the perspective of the drone, with RGB images and estimated depth maps. Red bar in the RGB image shows
angular rate of change of yaw required to turn away from obstacles. The flights from left to right are as follows: flying down a corridor (9/10 successful
flights), left turn at a T-junction (4/5 successful flights), Right turn at a bend in the corridor (5/5 successful flights)

All above problems can be solved using a cheap, low-
range, low-power proximity sensor like sonar or a bump
sensor on the propellor guards, which would also act as a
final fail-safe on a production drone. We intend to incorporate
sonar/bump sensing on our drone for future experiments, as it
would allow us to fly more aggressively and also gather more
training data for failure cases for the vision based algorithm,
that could be fed back into the training regime.

Our trained CNN needs a laptop GPU to run in real-time,
but can in future be incorporated into a small, low-power
GPU like the NVIDIA Jetson [20] that is meant for drones
and smartphones, yet built to support real-time deep learning
applications.

VI. CONCLUSIONS

We demonstrate, in both simulated and real world ex-
periments, the use of a deep CNN for single image depth
estimation and a control algorithm based on this estimated
depth, for steering a quadrotor away from obstacles in real
time. We train our network with an online database of image
and depth pairs and show that it is able to generalize over
previously unseen indoor environments. We further fine-tune
the network using data we collect ourselves, and observe
qualitative and quantitative improvements in the generated
depth maps.

In future work, we will experiment over a wider variety
of indoor and outdoor environments and incorporate images
from failure cases in the fine-tuning of the network.
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